Blockchain for Secure and Efficient Data Sharing in Vehicular Edge Computing and Networks


The drastically increasing volume and the growing trend on the types of data have brought in the possibility of realizing advanced applications such as enhanced driving safety, and have enriched existing vehicular services through data sharing among vehicles and data analysis. Due to limited resources with vehicles, vehicular edge computing and networks (VECONs) i.e., the integration of mobile edge computing and vehicular networks, can provide powerful computing and massive storage resources. However, road side units that primarily presume the role of vehicular edge computing servers cannot be fully trusted, which may lead to serious security and privacy challenges for such integrated platforms despite their promising potential and benefits. We exploit consortium blockchain and smart contract technologies to achieve secure data storage and sharing in vehicular edge networks. These technologies efficiently prevent data sharing without authorization. In addition, we propose a reputation-based data sharing scheme to ensure high-quality data sharing among vehicles. A three-weight subjective logic model is utilized for precisely managing reputation of the vehicles. Numerical results based on a real dataset show that our schemes achieve reasonable efficiency and high-level of security for data sharing in VECONs.

IEEE Internet of Things Journal